Для чего проводят отжиг

Для чего проводят отжиг

В настоящее время применяются различные виды термической обработки, которые предназначены для различных целей. Основными видами термической обработки являются отжиг, нормализация, закалка и отпуск. Кроме того, широко применяется химико-термическая обработка стали.

Отжиг. Представляет собой операцию термической обработки, заключающуюся в нагреве стали, выдержке при данной температуре и последующем медленном охлаждении вместе с печью или в песке со скоростью 2-3° в минуту. В результате отжига образуется устойчивая структура, свободная от остаточных напряжений.

Отжиг является одной из важнейших массовых операций термической обработки стали.

1) снижение твердости и повышение пластичности для облегчения обработки металлов резанием;

2) уменьшение внутреннего напряжения, возникающего после обработки давлением (ковка, штамповка), механической обработки и т. д.;

3) снятие хрупкости и повышение сопротивляемости ударной вязкости;

4) устранение структурной неоднородности состава материала, возникающей при затвердевании отливки в результате ликвации;

5) изменение свойств наклепанного металла.

В зависимости от поставленных задач отжиг производится при различных температурах и бывает двух видов: неполный и полный.

Температура отжига, как правило, должна быть на 20-30° выше 723° (критической точки), при которой происходит основное изменение внутреннего строения стали.

Скорость нагрева детали до температуры отжига зависит от химического состава, формы и размеров детали. При больших размерах и сложной форме детали нагрев должен быть медленным. Скорость охлаждения при отжиге должна быть малой. Углеродистые стали охлаждаются при отжиге со скоростью 100- 200° в час, низкоуглеродистые — со скоростью 50-60° в час, высоколегированные — еще медленнее. На практике при отжиге детали обычно охлаждаются вместе с печью до комнатной температуры.

При неполном отжиге, цель которого состоит только в устранении внутренних напряжений, сталь с любым содержанием углерода нагревают до 750-760°.

Для полного отжига сталь с содержанием углерода более 0,8% нагревают также до 750-760°, а при меньшем содержании требуется постепенное повышение температуры отжига до 930-950°. Детали выдерживаются при указанных температурах до полного нагрева. Время выдержки зависит от формы деталей. Затем их медленно охлаждают до комнатной температуры (20°). Качество отжига определяют по виду излома.

Источник: delta-grup.ru

Для чего нужна термообработка?

Надежность и долговечность оборудования, металлоконструкций и трубопроводов находятся в непосредственной зависимости от качества изготовления составляющих их элементов, деталей и узлов. В процессе эксплуатации последние подвергаются воздействию статических, динамических и циклических нагрузок, влиянию агрессивных сред, работают при экстремально высоких и низких температурах, находятся в условиях интенсивного износа.

Таким образом, эксплуатационная надежность металлоизделий находится в прямой зависимости от прочности, износостойкости, термо- и коррозионной стойкости составляющих их элементов.

В целях повышения этих характеристик необходимо правильно выбирать материалы деталей, совершенствовать их конструкцию, устранять неточности сборки, улучшать методы холодной и горячей обработки.

Для современного производства характерны высокие требования к свойствам материалов, обусловленные постоянным ростом производства, повышением производительности технологических процессов и связанной с ними необходимости изготовления крупногабаритного и сложного оборудования (реакторов, колонн, емкостей, теплообменников, фильтров). В связи с возрастающей интенсивностью нагружения производственного оборудования, например, печного (змеевиков печей) или динамического (компрессоров, насосов), важной задачей становится увеличение их срока эксплуатации и межремонтного цикла за счет использования более качественных материалов. Повышение рабочего давления и увеличение диаметров технологических трубопроводов, предназначенных для транспортировки агрессивных газообразных и жидких сред и эксплуатирующихся в сложных климатических условиях, влечет за собой применение новых материалов и высокотехнологических способов получения и обработки труб.

Этим высоким требованиям лишь в редких случаях могут отвечать материалы в состоянии поставки. Основная часть ответственных конструкционных элементов нуждается в упрочнении или стабилизации эксплуатационных свойств, не изменяющихся с течением времени, поэтому одним из способов повышения механических и физико-химических свойств металлических материалов является термическая обработка.

Термической обработкой металлов (термообработкой) называется совокупность операций нагрева, выдержки и охлаждения твердых металлов и металлических сплавов.

Термообработку проводят с целью изменения структуры и соответственно свойств металлов и сплавов в заданном направлении. Термическая обработка применяется для целенаправленного изменения структуры материала, а именно, фазового состава и перераспределения компонентов, размеров и формы кристаллических зерен, вида дефектов, их количества и распределения, что позволяет, в конечном счете, достаточно легко получать требуемые свойства материалов.

Следует отметить, что изменение структуры и соответственно свойств возможно не только под воздействием тепла, но и под влиянием других внешних факторов, например, при проведении химической, механической, радиационной, электромеханической и других видов обработки.

Важно помнить, что свойства металлов и сплавов зависят не только от их структуры, но и от их химического состава, который формируется в ходе проведения металлургических и литейных процессов. При термической обработке химический состав остается неизменным, лишь иногда при неправильно выбранном составе защитной среды и температурно-временных параметров термообработки изменяется химический состав на поверхности заготовок и изделий в результате протекания процессов обезуглероживания, науглероживания или окисления. В данной статье влияние химического состава на изменение различных свойств металлов и сплавов не рассматривается.

Задачами термической обработки являются ликвидация внутренних напряжений в металлах и сплавах, улучшение обрабатываемости резанием или давлением, повышение механических и эксплуатационных свойств и др..

Термической обработке подвергают заготовки, полуфабрикаты и готовые изделия. Номенклатура изделий, чрезвычайно широка – от крепежных изделий до крупнейших отливок и поковок статического и динамического нефтехимического оборудования.

Термической обработке подвергают стали, чугуны и сплавы на основе цветных металлов. Так, например, в химическом машиностроении основную долю обрабатываемых сталей составляют углеродистые стали Ст3, сталь 20 и др. (> 50%), доля низколегированных сталей типа 09Г2С, 16ГС, 12ХМ составляет

20%, а коррозионностойких сталей – 26 – 28%. Среди чугунов чаще всего применяют высокопрочный и ковкий чугуны. Наиболее распространенными сплавами на основе цветных металлов являются сплавы на основе никеля, титана, алюминия и меди.

Необходимо понимать, что для одного и того же материала, т.е. материала с одним химическим составом, благодаря проведению различных режимов термической обработки можно получить несколько разных структур, обладающих абсолютно различными свойствами. Улучшение механических свойств с помощью термообработки дает возможность шире использовать сплавы более простых составов. Термообработкой можно увеличить допускаемые напряжения, уменьшить массу деталей и механизмов, повысить их надежность и долговечность.

Термическую обработку металлов и сплавов проводят обычно в тех случаях, когда имеют место:

  • полиморфные превращения в металле;
  • ограниченная и переменная (увеличивающаяся с температурой) растворимость в твердом состоянии одного компонента в другом;
  • изменение строения под влиянием холодной пластической деформации.

В основе современной классификации видов термической обработки лежат представления о фазовых и структурных изменениях в сплаве.

Термическая обработка подразделяется на собственно термическую, термомеханическую и химико-термическую.

Собственно термическая обработка включает в себя следующие основные виды: отжиг 1-го рода, отжиг 2-го рода, закалку, отпуск. Нормализация несколько выпадает из общей классификации, т.к. имеет особенности при применении к сталям разной степени легированности.

Все виды термической обработки отличаются друг от друга температурой нагрева, продолжительностью выдержки при этой температуре и скоростью охлаждения по окончании выдержки.

Отжиг 1-го рода включает в себя гомогенизационный (диффузионный) отжиг, рекристаллизационный отжиг, отжиг для снятия напряжений.

Гомогенизационный отжиг необходим для выравнивания химического состава сталей, для устранения последствий дендритной ликвации. Рекристаллизационный отжиг используют в промышленности как первоначальную операцию перед холодной обработкой давлением (для придания материалу наибольшей пластичности), как промежуточный процесс между операциями холодного деформирования (для снятия наклепа) и как окончательную термическую обработку для придания полуфабрикату или изделию необходимых свойств. Отжиг для снятия напряжений применяют для литых, кованых и катаных заготовок, деталей после обработки резанием, шлифовки, сварки, термообработки с целью полного или частичного снятия остаточных макронапряжений в изделиях, которые могут вызывать искажение формы (коробление) и изменение размеров изделия во время его обработки, эксплуатации и хранения.

Отжиг 2-го рода подразделяют на полный отжиг, неполный отжиг, изотермический отжиг, сфероидизацию, нормализацию.

Полный отжиг применяют, главным образом, при обработке доэвтектоидных и эвтектоидных сталей с целью получения равномерной мелкозернистой структуры, снижения уровня напряжений, твердости и прочности, улучшения обрабатываемости резанием. Неполный отжиг используют для доэвтектоидных сталей для смягчения их перед обработкой резанием. Изотермический отжиг чаще применяют для легированных сталей для получения однородной структуры требуемой дисперсности с заданным уровнем свойств, а также для улучшения обрабатываемости сталей резанием. Сфероидизация представляет собой отжиг на зернистый перлит, структура которого имеет наименьшую твердость и обеспечивает наилучшую деформируемость сталей при волочении, глубокой вытяжке, холодной прокатке. В случае использования нормализации как предварительной обработки ее цели те же, что и при отжиге: получение равновесной мелкозернистой структуры, снижение твердости для последующей механической обработки. В заэвтектоидных сталях нормализация является единственным способом устранения грубой и хрупкой сетки цементита. Нормализацию как окончательную термообработку применяют для среднеуглеродистых машиностроительных сталей, строительных сталей и теплостойких сталей перлитного класса.

Читать еще:  Чем заклеить алюминиевый радиатор автомобиля

Закалку применяют для получения максимальной твердости, прочности и износостойкости изделий.

Отпуск проводят для приведения закаленного сплава в более устойчивое структурное состояние, снятия внутренних напряжений, повышения вязкости и пластичности.

По количеству проводимых операций термообработка может быть простой и состоять из одной из указанных операций или может быть сложной и состоять из нескольких операций.

По объему нагреваемого изделия термическая обработка может быть как полной (иначе объемной), т.е. нагреву подвергается все изделие, так и местной, когда нагревается локальный участок изделия.

По назначению термическую обработку подразделяют на предварительную и окончательную.

Цель предварительной (иначе промежуточной) обработки – предотвращение появления дефектов (флокенов, трещин) в металле после его обработки давлением в горячем состоянии и снижение твердости металла для облегчения проведения последующей механической обработки, например, обработки резанием, а также уменьшение остаточных напряжений и подготовки структуры под окончательную термическую обработку.

При окончательной термической обработке в металле формируется необходимая структура, обеспечивающая получение требуемого уровня физико-механических свойств готового изделия.

Качество термической обработки определяют следующие основные критерии:

  • обеспечение требуемых свойств материала;
  • сведение к минимуму побочных явлений – нежелательного изменения геометрических параметров изделий (формы, размеров, состояния поверхности) или нарушения сплошности материала;
  • обеспечение высоких технико-экономических показателей термического передела.

При незначительных затратах на термическую обработку (обычно не превышающих 2 – 4% полной себестоимости) результаты ее могут оказывать большое влияние на трудоемкость и стоимость работ на смежных участках производства. В связи с этим многие производители предпочитают не проводить термическую обработку, что позволяет им сократить технологический процесс изготовления изделия. Иногда это и с научной, и с практической точки зрения оправдано, но иногда – нет. Термическая обработка должна стать обязательной в тех случаях, когда снижение рабочих характеристик изделия, а также высокий уровень остаточных напряжений могут превысить допустимые пределы и привести к катастрофическому и необратимому разрушению металла.

В связи с этим надо не только тщательно продумывать технологические процессы объемной и местной термической обработки, но и строго соблюдать их режимы, добиваясь получения оптимальных структур и высокого уровня физико-механических и эксплуатационных свойств в изделиях с целью обеспечения их длительной и надежной работы.

Источник: www.nord-group.su

Процесс отжига стали и металла: виды, особенности, технология

На дворе XXI век — это век развитых технологий, инфраструктуры и промышленности. Это касается и области металлургии, которая имеет важнейшее значение для строительства. С рождением новых возможностей и идей повышаются и требования к качеству материалов. Человечество, которое совсем недавно освоило технологию обработки и применения металла и различных сплавов, больше не устраивают естественные механические свойства.

Отныне лишь высокопрочные и высококачественные материалы могут быть использованы в строительстве. И именно для изменения естественных свойств металла применяются различные методики термической обработки, такие, как отжиг металла, которые позволяют значительно повысить его прочность и обрабатываемость.

Что представляет собой отжиг

Отжиг — это один из методов термической обработки металла и стали. В его основе лежит нагрев до очень высокой температуры. То есть металл нагревается до нужной температуры в зависимости от цели и метода, выдерживается в таком состоянии на какое-то время, а затем постепенно охлаждается.

Отжиг может проводиться в самых разнообразных случаях. Для примера можно рассмотреть самые основные. Обычно он проводится в следующих целях:

  • для уменьшения внутренней напряженности металла, который может возникнуть в результате ковки, иного воздействия на него, или обработки;
  • для повышения механических свойств и прочности металла;
  • для придания однородности его структуре;
  • чтобы улучшить пластичность, что очень важно во время обработки;
  • для повышения уровня сопротивляемости и ударной вязкости и др.

Виды особенности

В зависимости от цели и предназначения отжиг может иметь следующие разновидности:

  • полный и неполный;
  • рекристаллизационный;
  • диффузионный;
  • изотермический;
  • сфероидизация;
  • нормализация и др.

Более подробно рассмотрим некоторые из них.

Технология полного отжига

Полный отжиг проводится в целях измельчения зерна и улучшения качества обработки с использованием режущего инструмента, а также для устранения внутренней напряженности. Ему подвергаются изделия, изготовленные из доэвтектоидного сплава или стали, в составе которой содержится карбон в количестве, не превышающем 0,8%. К таким изделиям относятся кованые и литые детали.

Что касается технологии: изделие подвергается нагреву, который достигает критической точки, равной примерно 20−50 градусов, имеющий условное обозначение А3. Затем выдерживают в этом состоянии столько, сколько необходимо, и медленно охлаждают. Температура нагрева определяется в зависимости от типа стали по диаграмме состояния. Для каждого типа стали существуют определенные значения температур, при которых достигается необходимая степень нагрева. Эти значения можно найти в справочных таблицах.

Время охлаждения также продиктовано структурой и составом стали, например, изделия из углеродистой стали охлаждают на 180−200 градусов в час, низколегированные стальные детали охлаждаются на 90 градусов в час, высоколегированную сталь, если она подвергается полному отжигу, охлаждают еще медленнее — 50 градусов в час. Поскольку изделия из высоколегированной стали зачастую подвергают другому типу термической обработки, изотермическому, однако бывают и исключения.

Вследствие полного отжига неоднородная структура углеродистой и доэвтектоидной стали, состоящая из крупных и мелких зерен и зачастую не удовлетворяющая по своим механическим свойствам, становится однородной и податливой для обработки. Именно в этих целях и проводится полный отжиг.

Особенности и цель неполного отжига

Если полный отжиг предназначается для изделий, не отвечающих никаким требованиям, то неполный проводится на тех же объектах с более или менее удовлетворительными механическими свойствами. То есть в результате неполной термической обработки изменится лишь перлитовая структура металла, а ферритовая останется неизменной. «Перлит» в переводе с французского означает «жемчужина», он входит в состав структуры стали, чугуна и иных железоуглеродистых сплавов. Перлит состоит из феррита и цементита, образующих эвтектоидную смесь. Другими словами, основная цель — сделать сталь мягкой и пластичной, насколько это возможно.

Технологически процесс неполного отжига отличается степенью нагрева, в данном случае он достигает критической точки на 30−50 градусов выше до А1. Температура нагрева достигает 770 градусов, постепенное охлаждение происходит со скоростью 60 градусов в час: сначала в печи до 600 градусов, а затем на открытом воздухе.

Такая термообработка также применяется для заэвтектоидной и легированной стали. Она нагревается до критической точки Ас1, превышающей на 10−30 градусов. В результате такого нагрева происходит перекристаллизация сплава, которая, в свою очередь, способствует образованию сферической формы перлита. Этот процесс еще называется сфероидизацией.

Рекристаллизация и диффузия

  • Рекристаллизационный отжиг проводится с целью восстановления кристаллической решетки, нарушенной в результате деформации стали. Деформация приводит к наклепу, который сопровождается снижением пластичности, сталь становится очень жесткой, что делает ее обработку невозможной. Деформированная сталь нагревается до 650−680 градусов, вследствие чего ферритовые и перлитовые зерна, находящиеся в вытянутом в сторону деформации состоянии, распределяются равномерно, восстанавливая кристаллическую решетку и возвращая стали пластичность и мягкость.
  • Диффузионный отжиг проводится в целях выравнивания структурной однородности на химическом уровне, то есть на атомном. Такая необходимость может возникнуть во время затвердевания литых слитков, иначе этот эффект называется дендритной ликвацией. Гомогенизация, или диффузионный отжиг, позволяет ликвидировать дендритную ликвацию посредством перемещения атомов примесей из части с высоким скоплением в часть, где наблюдается их нехватка, таким образом выравнивая химическую структуру.

Чтобы данный процесс протекал успешно, нагрев проводится при очень высоких температурах, с более длительной выдержкой и с медленным охлаждением, в отличие от видов, рассмотренных выше. То есть это температуры, превышающие 1000 градусов, длительность выдержки составляет более 12 часов.

Предназначение изотермического отжига и нормализации

Изотермический отжиг применяется для высоколегированных и высокохромистых сталей. Его особенность заключается в нагреве металла на 30−50 градусов выше критической точки Ас3 и в ускоренном охлаждении до температуры выдержки ниже критической точки А1, а затем в естественном охлаждении на открытом воздухе.

Данный вид дает несколько видимых преимуществ, первое из которых заключается во времени, то есть весь процесс — начиная от нагрева, выдержки и до остывания — занимает гораздо меньше времени, чем этап остывания детали вместе с печью. Второе преимущество состоит в том, что при изотермической выдержке и резком охлаждении достигается более сглаженная и однородная структура по сечению детали.

  • Нормализация. Процесс нормализации осуществляется в качестве промежуточного перед обработкой и закалкой в целях устранения наклепа и внутреннего напряжения. Доэвтектоидная сталь подвергается нагреву до критической точки Ас3 на 30−50 градусов выше, постепенно охлаждается на открытом воздухе. Причем в отличие от отжига при нормализации происходит переохлаждение, за счет чего и достигается более однородная тонкая и мелкозернистая структура.
  • Последствия нормализации. Значительно повышается прочность и ударная вязкость стали. Нормализация протекает гораздо быстрее, чем отжиг, а ее производительность намного выше. Поэтому рекомендуется нормализовать стали, содержащие в своем составе углерод, а не подвергать отжигу.
Читать еще:  Электрод сварочный мр 3 3мм

Источник: tokar.guru

Отжиг стали

Ассортимент изделий из металла огромен и в каждом случае требуются определенные, часто специфические качества материала. Обеспечить полный перечень марок производитель не в состоянии. Металлургические предприятия предлагают сырье, отвечающее ГОСТ, которое впоследствии дорабатывается на обрабатывающих производствах. Одна из ключевых операций — отжиг стали. На этой стадии металл приобретает необходимые технические свойства для последующей обработки. Чтобы понять, что такое отжиг стали, необходимо понимать для чего он делается, и какие процессы при этом происходят.

Почему необходима термическая обработка металла

Операцию проводят с целью улучшения технологических качеств сырья. Ключевым фактором становится температура отжига стали, которую необходимо выдерживать определенное время. При этом достигаются следующие цели:

  1. Снижение твердости. Качественные показатели после обработки позволяют существенно уменьшить трудозатраты, сократить время операций, используя более широкий перечень режущих инструментов.
  2. Улучшение микроструктуры. Под действием высокой температуры в определенный временной промежуток происходят существенные изменения на молекулярном уровне. Полученная однородная структура стали после отжига оптимальна для последующих механических и физических операций.
  3. Для снятия внутренних напряжений. В процессе первичной обработки на металлургических предприятиях в металле возникает дисбаланс кристаллической структуры. Правильно подобрав виды отжига стали, достигают необходимых характеристик металла для конкретного случая.

Иногда достаточен неполный отжиг стали для получения нужных технологических кондиций. В зависимости от желаемых качественных показателей металла могут использоваться сложные и длительные по времени режимы. Полный отжиг стали может длиться более суток для габаритных изделий. Большую часть этого времени занимают нагрев до нужной температуры и медленное остывание, регламентированное типом термической обработки при заданном стандарте.

Подробно режим отжига стали описан в специальной литературе. Некоторые операции предполагают соблюдение временного режима и точной температуры, вплоть да нескольких градусов. Если есть муфельная печь, то процедуру можно выполнить качественно. Когда такого оборудования нет, то точно провести отдельные виды термообработки будет затруднительно. Ориентироваться придется исключительно по цвету раскаленного металла.

Цвета каления стали

Сделать отжиг стали в домашних условиях можно по упрощенной схеме. Проконтролировать температуру предмета, нагретого газовой горелкой точно не получится. Регулировать режимы нагрева и остывания металла можно только примерно. При обработке стали в домашних условиях сделать структурный анализ невозможно. Определяется температура неполного отжига только визуально. Целями в бытовых условиях становятся снижение прочности и повышение обрабатываемости изделия. Микроструктура стали после отжига меняется и можно проводить дальнейшие операции.

Виды отжига

Принято делить эту операцию на два основных вида. Отжиг стали может быть 1-го и 2-го рода. В первом случае не происходит фазовой рекристаллизации, но металл приобретает нужные качества. Устраняются последствия механической обработки металла на прокатных станах, штампах.

Упрочнение поверхности стали после физического воздействия на металлургическом комбинате называют наклепом.

Главное назначение отжига стали 1-го рода — снижение прочности и повышение пластичности, необходимой для дальнейшей обработки. Частичная рекристаллизация снижает внутренние напряжения, что делает изделия более надежными и долговечными.

Отжиг стали 2-го рода характеризуется кардинальными изменениями структуры. Фазовая рекристаллизация достигается нагреванием металла выше критических точек и точным выполнением режима охлаждения по температуре и времени. Такие виды отжига и их назначение определяются производственными задачами для получения необходимых качеств металла. Критические температуры являются серьезным фактором риска. В ряде случаев, например, при пережоге, возникают необратимые изменения в структуре. Такой металл отправляется на переплавку. Термообработка, отжиг и нормализация сталей сложный процесс дающий возможность получить из исходного сырья продукцию, отвечающую по заданным характеристикам запросы производителей конечных изделий.

Полный, неполный отжиг

Применяют термическую обработку для достижения необходимых качеств металла. Цель отжига стали определена как получение заданных технологических свойств. Они могут быть как общими, так и достаточно специфичными. Так неполный отжиг заэвтектоидной стали допустим при изготовлении конструкционных элементов, но при производстве деталей с заданными характеристиками будет недостаточен. Изменения структуры металла в обоих типах обработки различны. Играет роль не только время отжига стали, но и температура. Важным фактором успешного решения задачи является и режим охлаждения.

Полный отжиг стали

При неполном отжиге стали температура не достигает верхней критической точки. Менее жестки и требования по выдержке времени охлаждения. Выполняя полный отжиг сталей, металл разогревают выше критической точки. Затем выдерживают указанное время и точно выполняют график охлаждения. При термообработке, отжиге важно учитывать марку сырья, твердость, химический состав, поскольку технология и режимы определяются нормами ГОСТ.

Изотермический отжиг

Этот вид обработки применяется главным образом для легированных сплавов. Изометрический отжиг стали заключается в нагревании металла до аустенитного состояния с последующим ускоренным охлаждением до 660-680° C. Затем заготовку выдерживают при этой температуре, пока аустенит не превратится в перлит. После этого металл охлаждают на воздухе естественным способом.

Это самый быстрый и эффективный способ повысить пластичность металлов с высоким содержанием хрома.

Высокотемпературный отжиг нержавеющей стали и некоторых других конструкционных, инструментальных сплавов делается таким способом. Подобная технология позволяет снизить твердость легированных материалов до уровня, позволяющего эффективно обрабатывать впоследствии заготовку на металлорежущем оборудовании.

Изотермический отжиг характеризуется особым методом охлаждения. Заданное время материал выдерживается при температуре, указанной в нормах на одном уровне, а не падает постепенно, как в других вариантах обработки. Формирование однородной структуры происходит за счет полного распада аустенита и преобразований ферритов и перлитов. Таким способом обрабатывают жаростойкие сплавы.

Эффективна эта методика для обработки небольших изделий, штамповок, инструментальных заготовок.

Изотермический отжиг имеет небольшой по времени технологический цикл, однако достаточно эффективный для решения многих производственных задач.

Диффузионный отжиг

Согласно отраслевым нормам, этот вид термообработки можно отнести к экстремальным. Металл нагревается до максимально возможной температуры, превышающей критические точки. Технология часто применяется для сплавов со сложными и легкоплавкими соединениями. При этом структура заэвтектоидной стали после отжига становится менее твердой и значительно пластичнее, что позволяет использовать широкий набор приемов для дальнейшей обработки. Метод требует полного контроля и соблюдения технологии, поскольку высоки риски перегрева и пережога, что может привести частично или полностью к утрате необходимых качеств и такой металл к дальнейшим операциям будет непригоден. Точная температура полного отжига доэвтектоидной стали и других марок металла есть в специальных справочниках.

Диффузионный отжиг стали

Правильно выполненная термообработка позволяет получить:

  • равновесный химический состав;
  • рост зерна;
  • растворение избыточных фаз;
  • образование, рост пор.

Последний пункт является побочным эффектом, относится к дефектам и при производстве стараются избегать возникновения этого явления. Технология отжига стали этим методом требует навыков и знаний, понимания разницы между отдельными видами и марками металла.

Рекристаллизационный отжиг

Методика, позволяющая избавиться от многих нежелательных качеств металла. Рекристаллизационный отжиг стали проводят с целью снять наклеп и другие последствия после некоторых механических операций. Технология применяют для обработки:

После рекристаллизационного отжига стали металл приобретает необходимые характеристики для получения изделий с заданными качествами.

Выбор технологии определяется химическим составом. При процедуре материал нагревают до значений, превышающих температуру кристаллизации не менее чем на 100-200° C. Необходимые свойства появляются в разной степени в зависимости от вида обработки. Чаще используют полный отжиг. При этом структурные изменения более существенные. В ряде случаев достаточен неполный отжиг.

Температурные зоны для рекристаллизационного отжига

Особенности отжига различных видов стали

Все термические операции с металлом проводят в строгом соответствии с предписанными требованиями к каждой марке. Определяющим значением становится содержание углерода, других металлов в составе сплава. Фактором, влияющим на твердость после отжига стали, является время выдержки в печи и режим охлаждения.

Для того чтобы точно выполнить условия охлаждения часто используются 2 печи. В одной поддерживается максимальная температура, а во второй изделие выдерживают необходимое количество времени до завершения внутренних структурных процессов. Так температура отжига нержавеющей стали в первой камере может превышать 1000° С, а потом изделия выдерживают несколько часов при 900° С и охлаждают до 300° С со скоростью 50-100° С в час. Дальнейшее охлаждение проводится на воздухе.

Читать еще:  Ацетилен реагирует с водой

Значительную долю в общем объеме термообработки занимают доэвтектоидные стали. Содержание углерода в них менее 0, 8%. Структуру составляют феррит и перлит, поэтому в большинстве случаев достаточно провести неполный отжиг доэвтектоидных сталей, что снизит твердость и повысит пластичность. Низкоуглеродистые сплавы используются в больших объемах в строительстве, в конструкциях, возводимых в народном хозяйстве. Однако в отдельных случаях требования к структуре металла более жесткие. Тогда необходимо проводить полный отжиг доэвтектоидных сталей для снятия напряжений и получения равновесной структуры с заданными качествами. Применяемый способ выбирается, опираясь на требования производителей, возможности имеющегося обрабатывающего оборудования. В технической документации обозначены температуры и время, необходимое при отжиге, для достижения качеств получаемых закалкой и отпуском.

В процессе термической обработки происходят сложные изменения структурного характера, которые можно анализировать только на специальном оборудовании. Разрабатывались нормы и рекомендации, опираясь на научные данные, выполнение которых в производственных условиях обязательно. Получаемая структура при отжиге и другие показатели строго регламентированы и в домашних условиях практически невыполнимы. Однако добиться изменения структурного строения, сделать металл мягким и податливым своими руками можно. Качество отожженной стали для бытового применения будет достаточным. Для домашнего мастера не важно, эвтектоидного или аустенитного класса сплав у обрабатываемой детали.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Виды отжига

Отжиг и нормализация стали

Отжиг — это нагрев стали до определенной температуры, выдержка при этой температуре и замедленное охлаждение с печью, а за тем на воздухе.

При медленном охлаждении в сталях происходит перлитное превращение в результате у доэвтектоидных сталей образуется структура Ф+П, эвтэктоидной — П, заэвтектоидных — П+Ц вторичный.

Назначение отжига: устранение ликваций, перекристаллизация (измельчение зерна), снятие внутренних напряжений, снижение твердости и повышение пластичности, улучшение обрабатываемости резанием.

1. Отжиг 1 рода предназначен для выравнивания физической или химической неоднородности. Целью этого отжига не является фазовая перекристаллизация, поэтому он может проводится как выше, так и ниже критических точек.

а) Гомогенизация (диффузионный отжиг) это нагрев стали до температуры 1100-1200 о С, выдержка 15-20 часов, охлаждение с печью до 800-820 о С и з тем охлаждение на воздухе. Диффузионному отжигу подвергают слитки легированной стали с целью устранения ликваций, повышения пластичности и вязкости.

Для быстрорежущих, подшипниковых и других высокоуглеродистых легированных сталей с целью повышения пластичности проводят трехступенчатую гомогенизацию — первая выдержка 2 часа при 1120-1200 о С, вторая — 1160-1240 о С, третья — 1150-1200 о С. В результате получается крупнозернистая равновесная структура: у доэвтектоидных сталей — Ф+П, эвтэктоидной — П, заэвтектоидных — П+ЦII.

б) Рекристаллизационный отжиг — это нагрев холоднодеформированной стали выше температуры начала рекристаллизации (680-740 о С), выдержка в течении 0,5-1,5 часов и замедленное охлаждение с печью до 600-650 о С, а затем на воздухе. Рекристаллизационный отжиг предназначен для снятия наклепа и повышения пластичности, т.к. происходит образование и рост новых равноосных зерен вместо деформированных.

в) Отжиг для снятия остаточных напряжений проводится при температуре 200-700 о С в течени 2-3 часов с последующим замедленным охлаждением. Он устраняет остаточные напряжения в отливках, сварных деталях, после резания, правки и др.

2. Отжиг 2 рода заключается в нагреве для получения мелкозернистой равновесной структуры. В большинстве случаев отжиг является подготовительной термической обработкой снижающей твердость и повышающий пластичность, отжигу подвергают: отливки, прокат. Для крупных отливок он является окончательной термообработкой.

а) Полный отжиг — это нагрев доэвтектоидной стали на 30-50 о С выше точки Ас3, выдержка при этой температуре, охлаждение с печью до температуры 550-650 о С, а затем на воздухе. При нагреве образуется мелкозернистый аустенит, который затем превращается в перлит. В результате у доэвтектоидных сталей образуется мелкозернистая феррито-перлитная структура, у эвтэктоидной — перлитная, а у заэвтектоидной – (перлит + цеменит вторичный). Полному отжигу чаще всего подвергаются крупные садки сортового проката, листового, крупные отливки.

б) Изотермический отжиг — это нагрев стали как для полного отжига, быстрое охлаждение до температуры 660-680 о С (обычно переносом металла в менее нагретую печь), выдержка при этой температуре до полного распада аустенита и охлаждение на воздухе. Как и полный отжиг, изотермический, приводит к снижению твердости, повышению пластичности и улучшению обрабатываемости резанием. Изотермический отжиг применяется для мелких деталей и имеет меньшую продолжительность процесса, чем полный отжиг.

в) Неполный отжиг — это нагрев сталей на 10-30 о С выше точки Ас1, выдержка при этой температуре и медленное охлаждение, для улучшения обрабатываемости резанием.

Чаще всего неполный отжиг применяется для заэвтэктоидных сталей и называется сфероидизацией, т.к. приводит к образованию зернистого перлита. Т.к. нагрев при неполном отжиге происходит немного выше Ас1, то не весь цементит успевает раствориться в аустените. При последующем медленном охлаждении этот нерастворившейся цементит выполняет роль центров кристаллизации, в результате чего цементит приобретает зернистую форму. Если в стали присутствует цементитная сетка, то перед неполным отжигом необходимо провести нормализацию. Эвтектоидные стали нагревают до температуры 750-760 о С, заэвтектоидные углеродистые — 770-790 о С, заэвтектоидные легированные до 770-820 о С.

Нормализация — это вид отжига, который заключается в нагреве доэвтектоидной стали на 30-50 о С выше Ас3, а заэвтектоидной стали — выше Асm, непродолжительной выдержке для завершения превращений и охлаждении на воздухе.

Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную на предыдущих стадиях обработки металла. Нормализацию широко применяют для улучшения свойств стальных отливок вместо закалки и отпуска. Ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах и получению структуры сорбита и троостита. Это повышает твердость и прочность нормализированной средне- и высокоуглеродистой стали по сравнению с отожжённой. В результате нормализацииу доэвтектоидных сталей образуется мелкозернистая феррито-сорбитная или феррито-трооститная структура, у эвтектоидной — сорбит или троостит и заэвтектоидной – сорбит или троостит с разрозненными включениями вторичного цементита.

Назначение нормализации различно в зависимости от состава стали. Для низкоуглеродистых сталей нормализацию применяют вместо отжига. Повышая твердость, нормализация обеспечивает большую производительность при обработке резанием и получение более чистой поверхности. Для отливок из среднеуглеродистой стали нормализацию с высоким отпуском применяют вместо закалки и высокого отпуска. В этом случае механические свойства несколько ниже, но детали подвергаются меньшей деформации при нормализации, чем при закалке, что практически исключает вероятность появления трещин. Нормализацию с высоким отпуском (600-650 о С) часто используется для исправления структуры легированных сталей вместо полного отжига, т.к. производительность при этом выше.

Для заэвтектоидных сталях нормализацию применяют с целью устранения цементитной сетки по краям зерен. При нагреве выше точки Асm вторичный цементит полностью растворяется в аустените. При последующем охлаждении на воздухе (ускоренном) цементитная сетка не успевает сформироваться, образуется разрозненные включения вторичного цементита.

Закалка стали

Закалка — это нагрев доэвтектоидной стали на 30-50°С выше Ас3, а заэвтектоидной выше Ас1, выдержка при этой температуре и ускоренное охлаждение в жидкостях (в воде, в водных растворах солей или щелочей, масле) с целью максимального повышения твёрдости и прочности.

В результате закалки у доэтектоидных и эвтектоидных сталей образуется структура мартенсит, а у заэвтектоидных мартенсит + цементит вторичный. Так как углеродистые стали обладают низкой устойчивостью аустенита, то для получения мартенсита необходимы высокие скорости охлаждения, что обеспечивается водой или водными растворами солей и щелочей. Для легированных сталей применяют минеральные масла.

Вода в качестве охлаждающей среды имеет недостатки:

— высокая скорость охлаждения может привести к образованию закалочных трещин, а так же вода быстро нагревается и теряет охлаждающую способность. Наиболее высокой и равномерной способностью обладают водные растворы NaCl и NaOH. Масло обеспечивает невысокую скорость охлаждения, что предотвращает образование закалочных трещин. Однако, оно склонно к воспламенению при температуре 165-300°С и имеет повышенную стоимость.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9296 — | 7285 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Ссылка на основную публикацию
Adblock
detector